Tracking the cellulolytic activity of Clostridium thermocellum biofilms
نویسندگان
چکیده
BACKGROUND Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics. RESULTS We showed the spatial heterogeneity of fiber distribution in pure cellulosic sheets, which made direct measurements of biofilm colonization and surface penetration impossible. Therefore, we utilized on-line measurements of carbon dioxide (CO2) production in continuous-flow reactors, in conjunction with confocal imaging, to observe patterns of biofilm invasion and to indirectly estimate microbial accessibility to the substrate's surface and the resulting limitations on conversion kinetics. A strong positive correlation was found between cellulose consumption and CO2 production (R2 = 0.996) and between surface area and maximum biofilm activity (R2 = 0.981). We observed an initial biofilm development rate (0.46 h-1, 0.34 h-1 and 0.33 h-1) on Whatman sheets (#1, #598 and #3, respectively) that stabilized when the accessible surface was maximally colonized. The results suggest that cellulose conversion kinetics is initially subject to a microbial limitation period where the substrate is in excess, followed by a substrate limitation period where cellular mass, in the form of biofilms, is not limiting. Accessible surface area acts as an important determinant of the respective lengths of these two distinct periods. At end-point fermentation, all sheets were digested predominantly under substrate accessibility limitations (e.g., up to 81% of total CO2 production for Whatman #1). Integration of CO2 production rates over time showed Whatman #3 underwent the fastest conversion efficiency under microbial limitation, suggestive of best biofilm penetration, while Whatman #1 exhibited the least recalcitrance and the faster degradation during the substrate limitation period. CONCLUSION The results showed that the specific biofilm development rate of cellulolytic bacteria such as C. thermocellum has a notable effect on overall reactor kinetics during the period of microbial limitation, when ca. 20% of cellulose conversion occurs. The study further demonstrated the utility of on-line CO2 measurements as a method to assess biofilm development and substrate digestibility pertaining to microbial solubilization of cellulose, which is relevant when considering feedstock pre-treatment options.
منابع مشابه
Transcriptomic Analysis of Clostridium thermocellum in Cellulolytic Consortium after Artificial Reconstruction to Enhance Ethanol Production
The cellulolytic and ethanologenic bacterial community is a promising candidate for the production of bioethanol from lignocellulose. In this study, by artificially changing the ratio of Clostridium thermocellum in the cellulolytic consortium H, ethanol production was increased by 72.7%. Metatranscriptomic analysis was used to elucidate the contribution of Clostridium thermocellum to ethanol pr...
متن کاملForm and function of Clostridium thermocellum biofilms.
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. U...
متن کاملEnzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum.
Specific cellulose hydrolysis rates (g of cellulose/g of cellulase per h) were shown to be substantially higher (2.7- to 4.7-fold) for growing cultures of Clostridium thermocellum as compared with purified cellulase preparations from this organism in controlled experiments involving both batch and continuous cultures. This "enzyme-microbe synergy" requires the presence of metabolically active c...
متن کاملThermostable chaperonin from Clostridium thermocellum.
Homologues of the chaperonins Cpn60 and Cpn10 have been purified from the Gram-positive cellulolytic thermophile Clostridium thermocellum. The Cpn60 protein was purified by ATP-affinity chromatography and the Cpn10 protein was purified by gel-filtration, ion-exchange and hydrophobic interaction chromatographies. The identities of the proteins were confirmed by N-terminal sequence analysis and a...
متن کاملUnravelling carbon metabolism in anaerobic cellulolytic bacteria.
Carbon metabolism in anaerobic cellulolytic bacteria has been investigated essentially in Clostridium thermocellum, Clostridium cellulolyticum, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. While cellulose depolymerization into soluble sugars by various cellulases is undoubtedly the first step in bacterial metabolisation of cellulose, it is not the only one to con...
متن کامل